Yonatan Belinkov
Harvard & MIT → Technion

Sebastian Gehrmann
Google Research

Ellie Pavlick
Brown University
Who should take this tutorial?

• This tutorial will present the main problems and approaches in interpreting and analyzing modern NLP models

• Target audience
 ○ NLP researchers and practitioners
 ○ We assume familiarity with mainstream NLP models and tasks
 ○ Anyone who wants to analyze NLP models or think critically about using current interpretation methods

• We aim to highlight key studies in the field
 ○ We do not aim to be exhaustive
 ○ We provide pointers to important references
 ○ We emphasize methodological limitations and opportunities
End-to-End Learning

- The predominant approach in NLP these days is end-to-end learning
- Learn a model $f : x \rightarrow y$, which maps input x to output y
End-to-End Learning

- For example, in machine translation we map a source sentence to a target sentence, via a deep neural network:

```
Mary did not slap the green witch
```

```
Maria no dió una bofetada a la bruja verde
```
A Historical Perspective

- Compare this with a traditional statistical approach to MT, based on multiple modules and features:

[Diagram showing language model, word alignment, phrase table, reordering model, and combine multiple modules.]

[Figure: http://www.statmt.org/moses]
End-to-End Learning

- The predominant approach in NLP these days is end-to-end learning, where all parts of the model are trained on the same task:
How can we open the black box?

- Given $f : x \rightarrow y$, we want to ask some questions about f
 - What is its internal structure?
 - How does it behave on different data?
 - Why does it make certain decisions?
 - When does it succeed/fail?
 - ...
Why should we care?

- Much deep learning research:
 - Trial-and-error, shot in the dark
 - Better understanding → better systems
Why should we care?

- Much deep learning research:
 - Trial-and-error, shot in the dark
 - Better understanding → better systems

- Accountability, trust, and bias in machine learning
 - “Right to explanation”, EU regulation
 - Life threatening situations: healthcare, autonomous cars
 - Better understanding → more accountable systems
Why should we care?

- Much deep learning research:
 - Trial-and-error, shot in the dark
 - Better understanding → better systems

- Accountability, trust, and bias in machine learning
 - “Right to explanation”, EU regulation
 - Life threatening situations: healthcare, autonomous cars
 - Better understanding → more accountable systems

- Neural networks aid the scientific study of language ([Linzen 2019](Linzen2019))
 - Models of human language acquisition
 - Models of human language processing
 - Better understanding → more interpretable models
Goal for today

1. Understand the toolbox of interpretability methods in NLP

2. Have an idea which tool to apply to a problem
Analysis Questionnaire

What is the goal of the study?
- Pedagogical / Debugging / Debiasing / …
- Understanding model structure / model decisions / data / …
- How do you quantify an outcome?

Who is your user or target group?
- ML or NLP Expert/ Domain Expert / Student / Lay User of the System …
- How much domain/ model knowledge do they have?
Outline

- Structural analyses Yonatan
- Behavioral analyses Ellie
- Interaction + Visualization Sebastian
- Other methods
Outline

- Structural analyses
- Behavioral analyses
- Interaction + Visualization
- Other methods
Structural Analyses

- Let $f : x \rightarrow y$ be a model mapping an input x to an output y
 - f might be a complicated neural network with many layers or other components
 - For example, $f_l(x)$ might be the output of the network at the l-th layer
- Some questions we might want to ask:
 - What is the role of different components of f?
 - What kind of information do different components capture?
 - More specifically: Does components A know something about property B?
Let \(f : x \rightarrow y \) be a model mapping an input \(x \) to an output \(y \)
- \(f \) might be a complicated neural network with many layers or other components
- For example, \(f_l(x) \) might be the output of the network at the \(l \)-th layer
Structural Analyses

● Let $f : x \rightarrow y$ be a model mapping an input x to an output y
 ○ f might be a complicated neural network with many layers or other components
 ○ For example, $f_l(x)$ might be the output of the network at the l-th layer

● Analysis via a probing classifier
 ○ Assume a corpus of inputs x with linguistic annotations z
 ○ Generate representations of x from some part of the model f, for example representations $f_l(x)$ at a certain layer
 ○ Train another classifier $g : f_l(x) \rightarrow z$ that maps the representations $f_l(x)$ to the property z
 ○ Evaluate the accuracy of g as a proxy to the quality of representations $f_l(x)$ w.r.t property z
Structural Analyses

- Let $f : x \rightarrow y$ be a model mapping an input x to an output y
 - f might be a complicated neural network with many layers or other components
 - For example, $f_l(x)$ might be the output of the network at the l-th layer

- Analysis via a probing classifier
 - Assume a corpus of inputs x with linguistic annotations z
 - Generate representations of x from some part of the model f, for example representations $f_l(x)$ at a certain layer
 - Train another classifier $g : f_l(x) \rightarrow z$ that maps the representations $f_l(x)$ to the property z
 - Evaluate the accuracy of g as a proxy to the quality of representations $f_l(x)$ w.r.t property z

- In information theoretic terms:
 - Set $h = f(x)$ and recall that $I(h; z) = H(z) - H(z | h)$
 - Then the probing classifier minimizes $H(z | h)$, or maximizes $I(h, z)$
Milestones (partial list)

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>x</th>
<th>y</th>
<th>g</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Köhn 2015</td>
<td>Word embedding</td>
<td>Word</td>
<td>Word</td>
<td>Linear</td>
<td>POS, morphology</td>
</tr>
<tr>
<td>Ettinger et al. 2016</td>
<td>Sentence embedding</td>
<td>Word, sentence</td>
<td>Word, sentence</td>
<td>Linear</td>
<td>Semantic roles, scope</td>
</tr>
<tr>
<td>Shi et al. 2016</td>
<td>RNN MT</td>
<td>Word, sentence</td>
<td>Word, sentence</td>
<td>Linear / tree decoder</td>
<td>Syntactic features, tree</td>
</tr>
<tr>
<td>Adi et al. 2017, Conneau et al. 2018</td>
<td>Sentence embedding</td>
<td>Sentence</td>
<td>Sentence</td>
<td>Linear, MLP</td>
<td>Surface, syntax, semantics</td>
</tr>
<tr>
<td>Hupkes et al. 2018</td>
<td>RNN, treeRNN</td>
<td>five plus three</td>
<td>eight</td>
<td>Linear</td>
<td>Position, cumulative value</td>
</tr>
<tr>
<td>Hewitt+Manning 2019</td>
<td>ELMo, BERT</td>
<td>Sentence</td>
<td>Sentence</td>
<td>Linear</td>
<td>Full tree</td>
</tr>
</tbody>
</table>
Example Results

● Numerous papers use this methodology to study:
 ○ Linguistic phenomena (z): phonology, morphology, syntax, semantics
 ○ Network components (f): word embeddings, sentence embeddings, hidden states, attention weights, etc.
● We’ll show example results on machine translation
● Much more related work reviewed in our survey (Belinkov and Glass 2019)
Example: Machine Translation

- **Setup**
 - f: an RNN encoder-decoder MT model
 - x and y are source and target sentences (lists of words)
 - g: a non-linear classifier (MLP with one hidden layer)
 - z: linguistic properties of words in x or y
Example: Machine Translation

● Setup
 ○ f: an RNN encoder-decoder MT model
 ○ x and y are source and target sentences (lists of words)
 ○ g: a non-linear classifier (MLP with one hidden layer)
 ○ z: linguistic properties of words in x or y

● Morphology:
 ○ A challenge for machine translation, previously solved with feature-rich approaches
 ○ Do neural networks acquire morphological knowledge?
Example: Machine Translation

- **Setup**
 - f: an RNN encoder-decoder MT model
 - x and y are source and target sentences (lists of words)
 - g: a non-linear classifier (MLP with one hidden layer)
 - z: linguistic properties of words in x or y

- **Morphology:**
 - A challenge for machine translation, previously solved with feature-rich approaches.
 - Do neural networks acquire morphological knowledge?

- **Experiment**
 - Take $f'(x)$, an RNN hidden state at layer l
 - Predict z, a morphological tag (verb-past-singular-feminine, noun-plural, etc.)
 - Compare accuracy at different layers l
Example: Machine Translation

1. Train a neural MT system

2. Generate feature representations using the trained model

3. Train classifier on an extrinsic task using generated features

Word Embeddings

Layer 1

Layer 2

Pronoun

Classifier

Task: POS tagging
Machine Translation: Morphology

- Lower is better
- But deeper models translate better → what’s going on in top layers?
Example: Machine Translation

- Setup
 - f: an RNN encoder-decoder MT model
 - x and y are source and target sentences (lists of words)
 - g: a non-linear classifier (MLP with one hidden layer)
 - z: linguistic properties of words in x or y
Probing Classifiers Questionnaire

What is the goal of the study?

- **Scientific** / Pedagogical / **Debugging** / Debiasing / …
- **Understanding model structure** / model decisions / data / …

How do you quantify an outcome? **Performance comparisons**

Who is your user or target group?

- **ML or NLP Expert** / Domain Expert / Student / Lay User of the System …

How much domain/ model knowledge do they have? **Enough to understand the model and problem domain**
Example: Machine Translation

● Setup
 ○ \(f \): an RNN encoder-decoder MT model
 ○ \(x \) and \(y \) are source and target sentences (lists of words)
 ○ \(g \): a non-linear classifier (MLP with one hidden layer)
 ○ \(z \): linguistic properties of words in \(x \) or \(y \)

● Syntax:
 ○ A challenge for machine translation, previously solved with hierarchical approaches.
 ○ Do neural networks acquire syntactic knowledge?
Example: Machine Translation

● Setup
 ○ f: an RNN encoder-decoder MT model
 ○ x and y are source and target sentences (lists of words)
 ○ g: a non-linear classifier (MLP with one hidden layer)
 ○ z: linguistic properties of words in x or y

● Syntax:
 ○ A challenge for machine translation, previously solved with hierarchical approaches.
 ○ Do neural networks acquire syntactic knowledge?

● Experiment
 ○ Take $[f(x_i); f(x_j)]$, RNN hidden states of words x_i and x_j, at layer l
 ○ Predict z, a dependency label (subject, object, etc.) between words x_i and x_j
 ○ Compare accuracy at different layers l
Machine Translation: Syntactic Relations

- Higher is better
Machine Translation: Semantic Relations

- Higher is better
Hierarchies

Language Hierarchy

Semantics
- Discourse
- Propositions
- Roles

Syntax
- Trees
- Phrases
- Relations

Morpho-Syntax
- Parts-of-speech
- Morphology

Lexicon
Hierarchies

Language Hierarchy

Semantics
- Discourse
- Propositions
- Roles
Syntax
- Trees
- Phrases
- Relations

Morpho-Syntax
- Parts-of-speech
- Morphology
- Lexicon

Vision Hierarchy

Scenes
- Objects
 - Object parts
 - Motifs
 - Edges
Probing Classifiers: Limitations

• Recall the setup:
 ○ Original model $f : x \rightarrow y$
 ○ Probing classifier $g : f(x) \rightarrow z$
 ○ g maximizes the mutual information between the representation $f(x)$ and property z
Probing Classifiers: Limitations

● Recall the setup:
 ○ Original model $f : x \rightarrow y$
 ○ Probing classifier $g : f(x) \rightarrow z$
 ○ g maximizes the mutual information between the representation $f(x)$ and property z

● Suppose we get an accuracy, what should we compare it to?
 ○ Many studies focus on relative performance (say, comparing different layers)
 ○ But it may be desirable to compare to external numbers
 ○ **Baselines**: Often, compare to using static word embeddings ([Belinkov et al. 2017](#)) or random features ([Zhang and Bowman 2018](#))
 ■ This tells us that a representation is non-trivial
 ○ **Skylines**: Sometimes, report the state-of-the-art on the task, or train a full-fledged model
 ■ This can tell us how much is missing from the representation
Probing Classifiers: Limitations

● Recall the setup:
 ○ Original model $f : x \rightarrow y$
 ○ Probing classifier $g : f(x) \rightarrow z$
 ○ g maximizes the mutual information between the representation $f(x)$ and property z

● Suppose we get an accuracy, what should we compare it to?
 ○ Hewitt and Liang (2019) define control tasks: tasks that only g can learn, not f
 ■ Specifically, assign a random label to each word type
 ○ A “good” probe should be selective: high linguistic task accuracy, low control task accuracy
 ○ Example
 ■ Linear vs. MLP
 ■ Accuracy vs. selectivity

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
<th>Selectivity</th>
<th>Accuracy</th>
<th>Selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proj0</td>
<td>96.3</td>
<td>20.6</td>
<td>97.1</td>
<td>1.6</td>
</tr>
<tr>
<td>ELMo1</td>
<td>97.2</td>
<td>26.0</td>
<td>97.3</td>
<td>4.5</td>
</tr>
<tr>
<td>ELMo2</td>
<td>96.6</td>
<td>31.4</td>
<td>97.0</td>
<td>8.8</td>
</tr>
</tbody>
</table>
Probing Classifiers: Limitations

- Recall the setup:
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z
Probing Classifiers: Limitations

- Recall the setup:
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z

- What is g? What is the relation between the probe g and the model f?
 - Common wisdom: use a linear classifier to focus on the representation and not the probe
Probing Classifiers: Limitations

- Recall the setup:
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z

- What is g? What is the relation between the probe g and the model f?
 - Pimentel et al. (2020) argue that we should always choose the most complex probe g, since it will maximize the mutual information $I(h; z)$, where $f(x)=h$
Probing Classifiers: Limitations

• Recall the setup:
 ○ Original model \(f : x \rightarrow y \)
 ○ Probing classifier \(g : f(x) \rightarrow z \)
 ○ \(g \) maximizes the mutual information between the representation \(f(x) \) and property \(z \)

• What is \(g \)? What is the relation between the probe \(g \) and the model \(f \)?
 ○ Pimentel et al. (2020) argue that we should always choose the most complex probe \(g \), since it will maximize the mutual information \(I(h; z) \), where \(f(x) = h \)
 ○ They also show that \(I(x; z) = I(h; z) \) (under mild assumptions)
 ■ Thus the representation \(f(x) := h \) contains the same amount of information about \(z \) as \(x \)
 ○ Does this make the probing endeavor obsolete?
Probing Classifiers: Limitations

● Recall the setup:
 ○ Original model $f : x \rightarrow y$
 ○ Probing classifier $g : f(x) \rightarrow z$
 ○ g maximizes the mutual information between the representation $f(x)$ and property z

● What is g? What is the relation between the probe g and the model f?
 ○ Pimentel et al. (2020) argue that we should always choose the most complex probe g, since it will maximize the mutual information $I(h; z)$, where $f(x)=h$
 ○ They also show that $I(x; z) = I(h; z)$ (under mild assumptions)
 ■ Thus the representation $f(x) := h$ contains the same amount of information about z as x
 ○ Does this make the probing endeavor obsolete?
 ○ Not necessarily:
 ■ We would still like to know how good a representation is in practice
 ■ We can still ask relative questions about ease of extraction of information
Probing Classifiers: Limitations

- Recall the setup:
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z

- What is g? What is the relation between the probe g and the model f?
 - [Voita and Titov (2020)] measure both probe complexity and probe quality
 - Instead of measuring accuracy, estimate the minimum description length: how many bits are required to transmit z knowing $f(x)$, plus the cost of transmitting g
 - Variational code: incorporate cost of transmitting g
 - Online code: incrementally train g on more data
Probing Classifiers: Limitations

- Recall the setup:
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z

- What is g? What is the relation between the probe g and the model f?
 - Voita and Titov (2020) measure both probe complexity and probe quality
 - Instead of measuring accuracy, estimate the minimum description length: how many bits are required to transmit z knowing $f(x)$, plus the cost of transmitting g
 - Variational code: incorporate cost of transmitting g
 - Online code: incrementally train g on more data
 - Example
 - Layer 0 control: control accuracy is high (96.3) but at the expense of codelength (267)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Accuracy</th>
<th>code length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 0</td>
<td>93.7 / 96.3</td>
<td>163 / 267</td>
</tr>
<tr>
<td>Layer 1</td>
<td>97.5 / 91.9</td>
<td>85 / 470</td>
</tr>
<tr>
<td>Layer 2</td>
<td>97.3 / 89.4</td>
<td>103 / 612</td>
</tr>
</tbody>
</table>
Probing Classifiers: Limitations

- Recall the setup:
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z
Probing Classifiers: Limitations

- Recall the setup:
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z

- Correlation vs. causation
 - The common setup only measures correlation between representation $f(x)$ and property z
 - It is not directly linked to the behavior of the model f on the task it was trained on, that is, predicting y
 - Some work found negative/lack of correlation between probe and task quality (Vanmassenhove et al. 2017, Cifka and Bojar 2018)
 - An alternative direction: intervene in the model representations to discover causal effects on prediction (Giulianelli et al. 2018, Bau et al. 2019, Vig et al. 2020, Feder et al. 2020)
Probing Classifiers: Limitations

● Recall the setup:
 ○ Original model $f : x \rightarrow y$
 ○ Probing classifier $g : f(x) \rightarrow z$
 ○ g maximizes the mutual information between the representation $f(x)$ and property z

● Alternative: causal interpretation via intervention
 ○ Giulianelli et al. 2018 train a classifier to predict number from LSTM states
 ○ Then backprop classifier gradients to change LSTM states so they predict number better
Probing Classifiers: Limitations

● Recall the setup:
 ○ Original model $f : x \rightarrow y$
 ○ Probing classifier $g : f(x) \rightarrow z$
 ○ g maximizes the mutual information between the representation $f(x)$ and property z

● Alternative: causal interpretation via intervention
 ○ Giulianelli et al. 2018 train a classifier to predict number from LSTM states
 ○ Then backprop classifier gradients to change LSTM states so they predict number better
 ○ They find:
 ■ improved probing accuracy, little effect on LM |
 ■ strong effect on an LM agreement test
 ○ Important connection between the classifier g
 and the behavior of the model f

<table>
<thead>
<tr>
<th></th>
<th>without intervention</th>
<th>with intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>78.1</td>
<td>85.4</td>
</tr>
<tr>
<td>Nonce</td>
<td>70.7</td>
<td>75.6</td>
</tr>
</tbody>
</table>
Probing Classifiers: Limitations

- Recall the setup:
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z

- Alternative: causal interpretation via intervention
 - Bau et al. 2019 study the role of individual neurons in MT
 - They identify important neurons and intervene in their behavior
 - Change their activations based on activation statistics over a corpus
 - Move towards the mean activation over a property (say, verb tense)
Probing Classifiers: Limitations

- Recall the setup:
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z

- Alternative: causal interpretation via intervention
 - Bau et al. 2019 study the role of individual neurons in MT
 - They identify important neurons and intervene in their behavior
 - Change their activations based on activation statistics over a corpus
 - Move towards the mean activation over a property (say, verb tense)
 - Successfully influence the translation of tense from past to present (67% success rate)
 - Less successful with influencing gender and number (20-30%)
Probing Classifiers: Limitations

● Recall the setup:
 ○ Original model $f : x \rightarrow y$
 ○ Probing classifier $g : f(x) \rightarrow z$
 ○ g maximizes the mutual information between the representation $f(x)$ and property z

● Alternative: causal interpretation via intervention
 ○ [Vig et al. 2020](https://example.com) use causal mediation analysis to interpret gender bias in language models
 ○ Define interventions via text edit operations and measure counterfactual outcomes
 ■ $p(\text{she} | \text{the nurse said that})$ vs. $p(\text{she} | \text{the man said that})$
Probing Classifiers: Limitations

● Recall the setup:
 ○ Original model $f : x \rightarrow y$
 ○ Probing classifier $g : f(x) \rightarrow z$
 ○ g maximizes the mutual information between the representation $f(x)$ and property z

● Alternative: causal interpretation via intervention
 ○ Vig et al. 2020 use causal mediation analysis to interpret gender bias in language models
 ○ Define interventions via text edit operations and measure counterfactual outcomes
 - $p(\text{she} \mid \text{the nurse said that})$ vs. $p(\text{she} \mid \text{the man said that})$
 ○ Examine mediators: neurons and attention heads
 ○ Calculate direct and indirect effects
Probing Classifiers: Limitations

- Recall the setup:
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z

- Alternative: causal interpretation via intervention
 - Vig et al. 2020 use causal mediation analysis to interpret gender bias in language models
Outline

- Structural analyses
- Behavioral analyses
- Interaction + Visualization
- Other methods
Behavioral Analyses

- Usually, we measure the *average-case* performance of $f : x \rightarrow y$ on a test set $\{x,y\}$, drawn uniformly at random from some text corpus.
Behavioral Analyses

- Usually, we measure the *average-case* performance of $f : x \rightarrow y$ on a test set $\{x, y\}$, drawn uniformly at random from some text corpus.
- However, this can reward models for performing well on common phenomena, and hide the fact that they perform poorly on “the tail”.
Behavioral Analyses

- Usually, we measure the *average-case* performance of $f: x \rightarrow y$ on a test set \{x,y\}, drawn uniformly at random from some text corpus.

- However, this can reward models for performing well on common phenomena, and hide the fact that they perform poorly on “the tail”.

- Challenge sets, a.k.a test suites aim to cover specific, diverse phenomena:
 - Systematicity
 - Exhaustivity
 - Control over data
Behavioral Analyses

● Usually, we measure the *average-case* performance of $f : x \rightarrow y$ on a test set $\{x, y\}$, drawn uniformly at random from some text corpus.

● However, this can reward models for performing well on common phenomena, and hide the fact that they perform poorly on “the tail”.

● Challenge sets, a.k.a. test suites aim to cover specific, diverse phenomena:
 ○ Systematicity
 ○ Exhaustivity
 ○ Control over data

● Thus they facilitate *fine-grained* analysis of model performance.

● And they have a long history in NLP evaluation (Lehmann et al. 1996, Cooper et al. 1996, …)
Behavioral Analyses

- Key idea: Design experiments that allow us to make inferences about the model’s representation based on the model’s behavior.
Behavioral Analyses

- Key idea: Design experiments that allow us to make inferences about the model’s representation based on the model’s behavior.

<table>
<thead>
<tr>
<th>Test Sample</th>
<th>Nearest Neighbor Training Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Image of two people on motorcycles]</td>
<td>[Image of people and safety cones]</td>
</tr>
<tr>
<td>Q: What color are the safety cones?</td>
<td>Q: What color are the cones?</td>
</tr>
<tr>
<td>GT Ans: green</td>
<td>GT Ans: orange</td>
</tr>
<tr>
<td>Predicted Ans: orange</td>
<td>GT Ans: orange</td>
</tr>
</tbody>
</table>

Q: What color is the cone?
GT Ans: orange

Q: What color are the cones?
GT Ans: orange

Generalization “Opportunities” in Visual Question Answering (VQA)
Behavioral Analyses

- Key idea: Design experiments that allow us to make inferences about the model’s representation based on the model’s behavior.

<table>
<thead>
<tr>
<th>Test Sample</th>
<th>Nearest Neighbor Training Samples</th>
<th>Generalization “Opportunities” in Visual Question Answering (VQA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: What color are the safety cones?</td>
<td>GT Ans: green</td>
<td>Warstadt et al. (2020)</td>
</tr>
<tr>
<td>GT Ans: orange</td>
<td>Predicted Ans: orange</td>
<td>Brett knew what many waiters find</td>
</tr>
<tr>
<td>Q: What color are the cones?</td>
<td>GT Ans: orange</td>
<td>Brett knew that many waiters find</td>
</tr>
<tr>
<td>Q: What color is the cone?</td>
<td>GT Ans: orange</td>
<td></td>
</tr>
</tbody>
</table>
Behavioral Analyses

- Key idea: Design experiments that allow us to make inferences about the model’s representation based on the model’s behavior.
- As with theories about human language representations: Claims about how a model works must be consistent with both physiological and behavioral data.

The Brain Basis of Language Processing: From Structure to Function. Friederici (2011)
Behavioral Analyses

● Benefits:
 ○ Theory agnostic, avoids prescriptivism. No constraints on how you represent it (symbolic, neural, feature-engineered) as long as it explains the data
 ○ Avoid "squinting at the data". Objective criteria for what counts as "representing" a thing
 ○ Interfaces well with linguistics and other fields. "We are all responsible for the same data".
 ○ Practical—whether the model represents a feature, but whether it uses it in the right way

● Limitations
 ○ What’s to blame, the model or the data? How do we know what generalizations are "fair"?
 ○ Only tells us that a model did/didn’t solve a task; few insights into how the model solved the task, or why it failed to
 ○ Hard to design tightly controlled stimuli, probing sets themselves can have artifacts
 ○ Risk of overfitting to the challenge sets
Behavioral Analyses

● Benefits:
 ○ Theory agnostic, avoids prescriptivism. No constraints on how you represent it (symbolic, neural, feature-engineered) as long as it explains the data

● Limitations
 ○ What's to blame, the model or the data? How do we know what generalizations are "fair"?
 ○ Only tells us that a model did/didn't solve a task; few insights into how the model solved the task, or why it failed to
 ○ Hard to design tightly controlled stimuli, probing sets themselves can have artifacts
 ○ Risk of overfitting to the challenge sets
Behavioral Analyses

● Benefits:
 ○ Theory agnostic, avoids prescriptivism. No constraints on how you represent it (symbolic, neural, feature-engineered) as long as it explains the data
 ○ Avoid “squinting at the data”. Objective criteria for what counts as “representing” a thing

● Limitations
Behavioral Analyses

● Benefits:
 ○ Theory agnostic, avoids prescriptivism. No constraints on how you represent it (symbolic, neural, feature-engineered) as long as it explains the data
 ○ Avoid “squinting at the data”. Objective criteria for what counts as “representing” a thing
 ○ Interfaces well with linguistics and other fields. “We are all responsible for the same data”.

● Limitations
Behavioral Analyses

● Benefits:
 ○ Theory agnostic, avoids prescriptivism. No constraints on how you represent it (symbolic, neural, feature-engineered) as long as it explains the data
 ○ Avoid “squinting at the data”. Objective criteria for what counts as “representing” a thing
 ○ Interfaces well with linguistics and other fields. “We are all responsible for the same data”.
 ○ Practical--not whether the model represents a feature, but whether it uses it in the right way

● Limitations
Behavioral Analyses

● Benefits:
 ○ Theory agnostic, avoids prescriptivism. No constraints on how you represent it (symbolic, neural, feature-engineered) as long as it explains the data
 ○ Avoid “squinting at the data”. Objective criteria for what counts as “representing” a thing
 ○ Interfaces well with linguistics and other fields. “We are all responsible for the same data”.
 ○ Practical--not whether the model represents a feature, but whether it uses it in the right way

● Limitations
 ○ What’s to blame, the model or the data? How do we know what generalizations are “fair”?
Behavioral Analyses

● **Benefits:**
 ○ Theory agnostic, avoids prescriptivism. No constraints on how you represent it (symbolic, neural, feature-engineered) as long as it explains the data
 ○ Avoid “squinting at the data”. Objective criteria for what counts as “representing” a thing
 ○ Interfaces well with linguistics and other fields. “We are all responsible for the same data”.
 ○ Practical--not whether the model represents a feature, but whether it uses it in the right way

● **Limitations**
 ○ What’s to blame, the model or the data? How do we know what generalizations are “fair”?
 ○ Only tells us *that* a model did/didn’t solve a task; few insights into *how* the model solved the task, or *why* it failed to
Behavioral Analyses

● Benefits:
 ○ Theory agnostic, avoids prescriptivism. No constraints on how you represent it (symbolic, neural, feature-engineered) as long as it explains the data
 ○ Avoid “squinting at the data”. Objective criteria for what counts as “representing” a thing
 ○ Interfaces well with linguistics and other fields. “We are all responsible for the same data”.
 ○ Practical--not whether the model represents a feature, but whether it uses it in the right way

● Limitations
 ○ What’s to blame, the model or the data? How do we know what generalizations are “fair”?
 ○ Only tells us that a model did/didn’t solve a task; few insights into how the model solved the task, or why it failed to
 ○ Hard to design tightly controlled stimuli, probing sets themselves can have artifacts
Behavioral Analyses

- **Benefits:**
 - Theory agnostic, avoids prescriptivism. No constraints on how you represent it (symbolic, neural, feature-engineered) as long as it explains the data
 - Avoid “squinting at the data”. Objective criteria for what counts as “representing” a thing
 - Interfaces well with linguistics and other fields. “We are all responsible for the same data”.
 - Practical--not whether the model represents a feature, but whether it uses it in the right way

- **Limitations**
 - What’s to blame, the model or the data? How do we know what generalizations are “fair”?
 - Only tells us *that* a model did/didn’t solve a task; few insights into *how* the model solved the task, or *why* it failed to
 - Hard to design tightly controlled stimuli, probing sets themselves can have artifacts
 - Risk of overfitting to the challenge sets
Challenge Sets Questionnaire

What is the goal of the tool?

Scientific / Pedagogical / Debugging / Debiasing / …
Understanding model structure / model decisions / data / …
How do you quantify an outcome? (Relative) accuracy across different challenge sets

Who is your user?

ML or NLP Expert/ Domain Expert / Student / …
How much domain/model knowledge do they have? Knowledge of target phenomena, but no model knowledge

The answers will inform the following implementation questions:

Does the tool require interaction with the model? With the data? Model treated as a “black box”
Can you change the model structure or model decisions? No
Behavioral Analyses

- See recent Belinkov & Glass [survey](#) for a categorization of many studies
- Tasks
 - Especially machine translation and natural language inference
- Linguistic phenomena
 - Morphology, syntax, lexical semantics, predicate-argument structure
- Languages
 - Mostly focusing on English, some artificial languages, not much work on other languages
- Scale
 - Ranging from hundreds to many thousands
- Construction method
 - Either manual or programmatic
Tasks used as probing tasks

- Ideally, simple task interfaces which can support lots of model types
- Ideally, minimal need for training/finetuning on top of model being “probed”
<table>
<thead>
<tr>
<th>Task</th>
<th>Example</th>
<th>Typical Use</th>
<th>Strengths</th>
<th>Limitations</th>
<th>E.g.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Task</th>
<th>Example</th>
<th>Typical Use</th>
<th>Strengths</th>
<th>Limitations</th>
<th>E.g.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM Generation?</td>
<td>The boy by the boats [is/*are] smiling.</td>
<td>Syntactic phenomena</td>
<td>No additional training on top of pretrained LM</td>
<td>Often uses ppl, so best for left-to-right language models. Harder to use for newer variants.</td>
<td>Linzen et al. (2016)</td>
</tr>
<tr>
<td>Task</td>
<td>Example</td>
<td>Typical Use</td>
<td>Strengths</td>
<td>Limitations</td>
<td>E.g.</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------------------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>LM /Generation?</td>
<td>The boy by the boats [is/*are] smiling.</td>
<td>Syntactic phenomena</td>
<td>No additional training on top of pretrained LM</td>
<td>Often uses ppl, so best for left-to-right language models. Harder to use for newer variants.</td>
<td>Linzen et al. (2016)</td>
</tr>
<tr>
<td>Acceptability</td>
<td>The boy by the boats [is/*are] smiling.</td>
<td>Syntactic and semantic phenomena</td>
<td>More flexible than LM across architectures; well studied in ling.</td>
<td>Usually requires additional training on top of LM.</td>
<td>Warstadt et al. (2020)</td>
</tr>
<tr>
<td>Task</td>
<td>Example</td>
<td>Typical Use</td>
<td>Strengths</td>
<td>Limitations</td>
<td>E.g.</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>------------------------------</td>
<td>---</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>LM/Generation?</td>
<td>The boy by the boats [is/*are] smiling.</td>
<td>Syntactic phenomena</td>
<td>No additional training on top of pretrained LM</td>
<td>Often uses ppl, so best for left-to-right language models. Harder to use for newer variants.</td>
<td>Linzen et al. (2016)</td>
</tr>
<tr>
<td>Acceptability</td>
<td>The boy by the boats [is/*are] smiling.</td>
<td>Syntactic and semantic phenomena</td>
<td>More flexible than LM across architectures; well studied in ling.</td>
<td>Usually requires additional training on top of LM.</td>
<td>Warstadt et al. (2020)</td>
</tr>
<tr>
<td>NLI</td>
<td>The boy is smiling. -> The boy [is/*is not] happy.</td>
<td>Semantics/pragmatics/world knowledge</td>
<td>Flexible, easy to “recast” many tasks to NLI; long history</td>
<td>Often awkward sentences/confounds; low human agreement</td>
<td>White et al. (2017)</td>
</tr>
<tr>
<td>Task</td>
<td>Example</td>
<td>Typical Use</td>
<td>Strengths</td>
<td>Limitations</td>
<td>E.g.</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>----------------------------------</td>
<td>--</td>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>LM/Generation?</td>
<td>The boy by the boats [is/*are] smiling.</td>
<td>Syntactic phenomena</td>
<td>No additional training on top of pretrained LM</td>
<td>Often uses ppl, so best for left-to-right language models. Harder to use for newer variants.</td>
<td>Linzen et al. (2016)</td>
</tr>
<tr>
<td>Acceptability</td>
<td>The boy by the boats [is/*are] smiling.</td>
<td>Syntactic and semantic phenomena</td>
<td>More flexible than LM across architectures; well studied in ling.</td>
<td>Usually requires additional training on top of LM.</td>
<td>Warstadt et al. (2020)</td>
</tr>
<tr>
<td>NLI</td>
<td>The boy is smiling. -> The boy [is/*is not] happy.</td>
<td>Semantics/pragmatics/world knowledge</td>
<td>Flexible, easy to “recast” many tasks to NLI; long history</td>
<td>Often awkward sentences/confounds; low human agreement</td>
<td>White et al. (2017)</td>
</tr>
<tr>
<td>Generation</td>
<td>Dante was born in [Mask]</td>
<td>Semantics/pragmatics/world knowledge</td>
<td>Can be more natural than NLI; incorporates more context</td>
<td>Hard to auto evaluate, esp. beyond one word/factoid questions</td>
<td>Petroni et al. (2019)</td>
</tr>
<tr>
<td>Task</td>
<td>Example</td>
<td>Typical Use</td>
<td>Strengths</td>
<td>Limitations</td>
<td>E.g.</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------------------</td>
<td>---</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>LM /Generation?</td>
<td>The boy by the boats [is/*are] smiling.</td>
<td>Syntactic phenomena</td>
<td>No additional training on top of pretrained LM</td>
<td>Often uses ppl, so best for left-to-right language models. Harder to use for newer variants.</td>
<td>Linzen et al. (2016)</td>
</tr>
<tr>
<td>Acceptability</td>
<td>The boy by the boats [is/*are] smiling.</td>
<td>Syntactic and semantic phenomena</td>
<td>More flexible than LM across architectures; well studied in ling.</td>
<td>Usually requires additional training on top of LM.</td>
<td>Warstadt et al. (2020)</td>
</tr>
<tr>
<td>NLI</td>
<td>The boy is smiling. -> The boy [is/*is not] happy.</td>
<td>Semantics/pragmatics/world knowledge</td>
<td>Flexible, easy to “recast” many tasks to NLI; long history</td>
<td>Often awkward sentences/confounds; low human agreement</td>
<td>White et al. (2017)</td>
</tr>
<tr>
<td>Generation</td>
<td>Dante was born in [Mask]</td>
<td>Semantics/pragmatics/world knowledge</td>
<td>Can be more natural than NLI; incorporates more context</td>
<td>Hard to auto evaluate, esp. beyond one word/factoid questions</td>
<td>Petroni et al. (2019)</td>
</tr>
<tr>
<td>MT</td>
<td>The repeated calls from his mother should have alerted us. / Les appels rep´ et´ es de sa m ´ ere devraient ` nous avoir alertes.</td>
<td>Multilingual morpho-/lexico-/syntax (e.g. cross-lingual agreement)</td>
<td>Only way of specifically probing cross-lingual systems</td>
<td>Often relies on manual eval (though recent approaches use probabilities similar to in LM tasks)</td>
<td>Isabelle et al. (2017)</td>
</tr>
</tbody>
</table>
Experimental Designs

- Tightly Controlled
- Loosely Controlled
- Adversarial Examples
Minimal Pairs/Counterfactuals

Pros: Few confounds, more easy to attribute difference to the phenomena itself

Cons: Can be hard to generate; may not exist in a way that is natural

Good for phenomena that manifest neatly in the grammar (syntactic agreement, studying gender bias), but less so for complex phenomena (common sense/world knowledge)

Experimental Designs: Tightly Controlled
Experimental Designs: Tightly Controlled

- Minimal Pairs/Counterfactuals
Experimental Designs: Tightly Controlled

- Minimal Pairs/Counterfactuals

Gender Bias: Rudinger et al. (2018)

(1a) The paramedic performed CPR on the passenger even though she/he/they knew it was too late.

(2a) The paramedic performed CPR on the passenger even though she/he/they was/were already dead.
Experimental Designs: Tightly Controlled

- Minimal Pairs/Counterfactuals

Gender Bias: Rudinger et al. (2018)

(1a) The paramedic performed CPR on the passenger even though she/he/they knew it was too late.

(2a) The paramedic performed CPR on the passenger even though she/he/they was/were already dead.

Subj.-Verb Agree.: Marvin and Linzen (2018)

a. The farmer that the parents love swims.

b. *The farmer that the parents love swim.
Experimental Designs: Tightly Controlled

- Minimal Pairs/Counterfactuals

<table>
<thead>
<tr>
<th>Gender Bias:</th>
<th>Rudinger et al. (2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1a) The paramedic performed CPR on the passenger even though she/he/they knew it was too late.</td>
<td></td>
</tr>
<tr>
<td>(2a) The paramedic performed CPR on the passenger even though she/he/they was/were already dead.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subj.-Verb Agree.:</th>
<th>Marvin and Linzen (2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. The farmer that the parents love swims.</td>
<td></td>
</tr>
<tr>
<td>b. *The farmer that the parents love swim.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Veridicality:</th>
<th>White et al. (2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Someone {knew, didn’t know} that a particular thing happened.</td>
<td></td>
</tr>
<tr>
<td>Someone {was, wasn’t} told that a particular thing happened.</td>
<td></td>
</tr>
<tr>
<td>Did that thing happen?</td>
<td></td>
</tr>
</tbody>
</table>
Experimental Designs: Tightly Controlled

- Minimal Pairs/Counterfactuals
- Pros: Few confounds, easier to attribute difference to the phenomena itself
- Cons: Can be hard to generate; may not exist in a way that is natural
- Good for phenomena that manifest neatly in the grammar (SV agreement, gender bias), but less so for complex phenomena (“common sense”)

 Gender Bias: Rudinger et al. (2018)

| (1a) The paramedic performed CPR on the passenger even though she/he/they knew it was too late. |
| (2a) The paramedic performed CPR on the passenger even though she/he/they was/were already dead. |

 Subj.-Verb Agree.: Marvin and Linzen (2018)

 a. The farmer that the parents love swims.
 b. *The farmer that the parents love swim.

 Veridicality: White et al. (2018)

 Someone {knew, didn’t know} that a particular thing happened.
 Someone {was, wasn’t} told that a particular thing happened.
 Did that thing happen?
Experimental Designs: Loosely Controlled
Experimental Designs: Loosely Controlled

- Average over sets with vs. without property of interest
Experimental Designs: Loosely Controlled

- Average over sets with vs. without property of interest

FraCas: [Cooper et al. (1996)]

- Quantifiers
- Plurals
- Anaphora
- Ellipsis
- Adjectives
- Comparative
- Temporal
- Verbs
- Attitudes
Experimental Designs: Loosely Controlled

- Average over sets with vs. without property of interest

FraCas: Cooper et al. (1996)
- Quantifiers
- Ellipsis
- Temporal
- Plurals
- Adjectives
- Verbs
- Anaphora
- Comparative
- Attitudes

GLUE Diagnostic Set: Wang et al. (2019)
- Lexical Semantics
- Predicate-Argument
- Logic
- Common Sense
Experimental Designs: Loosely Controlled

- Average over sets with vs. without property of interest

<table>
<thead>
<tr>
<th>FraCas: Cooper et al. (1996)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantifiers</td>
</tr>
<tr>
<td>Ellipsis</td>
</tr>
<tr>
<td>Temporal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GLUE Diagnostic Set: Wang et al. (2019)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexical Semantics</td>
</tr>
<tr>
<td>Predicate-Argument</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diverse Natural Language Inference Corpus (DNC): Poliak et al. (2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Factuality</td>
</tr>
<tr>
<td>Puns</td>
</tr>
</tbody>
</table>
Experimental Designs: Loosely Controlled

- Average over sets with vs. without property of interest
- Pros: Can consist of naturalistic data; can generate larger test sets
- Cons: Contain artifacts, harder to attribute differences to target phenomena

<table>
<thead>
<tr>
<th>FraCas: Cooper et al. (1996)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantifiers</td>
</tr>
<tr>
<td>Ellipsis</td>
</tr>
<tr>
<td>Temporal</td>
</tr>
<tr>
<td>Plurals</td>
</tr>
<tr>
<td>Adjectives</td>
</tr>
<tr>
<td>Verbs</td>
</tr>
<tr>
<td>Anaphora</td>
</tr>
<tr>
<td>Comparative</td>
</tr>
<tr>
<td>Event Factuality</td>
</tr>
<tr>
<td>Named Entities</td>
</tr>
<tr>
<td>Gendered Anaph.</td>
</tr>
<tr>
<td>Puns</td>
</tr>
<tr>
<td>Relation Extract.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GLUE Diagnostic Set: Wang et al. (2019)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexical Semantics</td>
</tr>
<tr>
<td>Logic</td>
</tr>
<tr>
<td>Predicate-Argument</td>
</tr>
<tr>
<td>Common Sense</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diverse Natural Language Inference Corpus (DNC): Poliak et al. (2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexico-Syntax</td>
</tr>
<tr>
<td>Event Factuality</td>
</tr>
<tr>
<td>Named Entities</td>
</tr>
<tr>
<td>Gendered Anaph.</td>
</tr>
<tr>
<td>Puns</td>
</tr>
<tr>
<td>Relation Extract.</td>
</tr>
<tr>
<td>Sentiment</td>
</tr>
</tbody>
</table>
Design data sets (usually using minimal pairs or “perturbations”) that specifically emphasize a model’s weaknesses

Pros: Practical analysis of failures; can be used as training to improve model

Cons: Sets age quickly; are model/data specific; “whack-a-mole” approach

Experimental Designs: Adversarial Examples
Experimental Designs: Adversarial Examples

- Design data sets (usually using minimal pairs or “perturbations”) that specifically emphasize a model’s weaknesses
Experimental Designs: Adversarial Examples

- Design data sets (usually using minimal pairs or “perturbations”) that specifically emphasize a model’s weaknesses

Jia and Liang (2017)

Article: Super Bowl 50

Paragraph: “Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver’s Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV.”

Question: “What is the name of the quarterback who was 38 in Super Bowl XXXIII?”

Original Prediction: John Elway

Prediction under adversary: Jeff Dean
Experimental Designs: Adversarial Examples

- Design data sets (usually using minimal pairs or “perturbations”) that specifically emphasize a model’s weaknesses

Jia and Liang (2017)

- **Article:** Super Bowl 50
- **Paragraph:** “Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver’s Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV.”
- **Question:** “What is the name of the quarterback who was 38 in Super Bowl XXXIII?”
- **Original Prediction:** John Elway
- **Prediction under adversary:** Jeff Dean

Adversarial NLI: Nie et al. (2019)
Experimental Designs: Adversarial Examples

- Design data sets (usually using minimal pairs or “perturbations”) that specifically emphasize a model’s weaknesses
- Pros: Practical analysis of failures; can be used as training to improve model
- Cons: Sets age quickly; are model/data specific; “whack-a-mole” approach

Jia and Liang (2017)

Article: Super Bowl 50
Paragraph: “Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver’s Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV.”

Question: “What is the name of the quarterback who was 38 in Super Bowl XXXIII?”

Original Prediction: John Elway
Prediction under adversary: Jeff Dean

Adversarial NLI: Nie et al. (2019)

Collection Phase
- **Target Label**
- **Context**
- **Writer**
- **Feedback**
- **Hypothesis**
- **Prediction**

Training Phase
- **Train**
- **Dev**
- **Test**

Steps:
1. Step 1: Write examples
2. Step 2: Get model feedback
3. Step 3: Verify examples and make splits
4. Step 4: Retrain model for next round
Construction Methods

- Sources of Data
 - Sentences drawn from existing corpora
 - Sentences drawn from existing benchmark sets/test suites
 - Templates
 - Manual Generation

- Example/Label Generation
 - Labels are given by-definition (e.g. if using templates or manual generation)
 - Automatically manipulate sentences and assume heuristic labels (+/- human filtering)
 - Purely automatic (e.g. adversarial)
 - Purely manual labeling (e.g. human generated examples)
Construction Methods

● Sources of Data
 ○ Sentences drawn from existing corpora
 ○ Sentences drawn from existing benchmark sets/test suites
 ○ Templates
 ○ Manual Generation

● Example/Label Generation
Construction Methods

- **Sources of Data**
 - Sentences drawn from existing corpora
 - Sentences drawn from existing benchmark sets/test suites
 - Templates
 - Manual Generation

- **Example/Label Generation**
 - Labels are given by-definition (e.g. if using templates or manual generation)
 - Automatically manipulate sentences and assume heuristic labels (+/- human filtering)
 - Purely automatic (e.g. adversarial)
 - Purely manual labeling (e.g. human generated examples)
Construction Methods: Entirely Manual
Construction Methods: Entirely Manual

- Examples: Build-It-Break-It, Adversarial NLI
Construction Methods: Entirely Manual

- Examples: **Build-It-Break-It**, **Adversarial NLI**

Nie et al. (2019)
Construction Methods: Semi-Automatic
Construction Methods: Semi-Automatic

- Manipulate Existing Corpora, Filter with Crowdsourcing
Construction Methods: Semi-Automatic

- Manipulate Existing Corpora, Filter with Crowdsourcing
 - Examples: [Ross and Pavlick (2018)](#), [Kim et al. (2018)](#), [Poliak et al. (2018)](#)

Find sentences in existing corpus containing target phenomenon

- Everyone **knows that** the CPI is the most accurate.
- I **know that** I was born to succeed

Apply automatic manipulations and assign labels

- Everyone **knows that** the CPI is the most accurate. -> The CPI is the most accurate
- I **know that** I was born to succeed -> I was born to succeed

Crowdsource to confirm human labels match expected labels

Final, vetted corpus

- Everyone **knows that** the CPI is the most accurate. -> The CPI is the most accurate
- I **know that** I was born to succeed -> I was born to succeed
Construction Methods: Semi-Automatic

- Hand-crafted templates that produce known labels
 - Examples: Ettinger et al. (2018), McCoy et al. (2019)
Construction Methods: Semi-Automatic

- Hand-crafted templates that produce known labels
 - Examples: Ettinger et al. (2018), McCoy et al. (2019)

<table>
<thead>
<tr>
<th>Subcase</th>
<th>Template</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entailment: Conjunctions</td>
<td>The N_1 and the $N_2 \lor$ the N_3</td>
<td>The actor and the professor mentioned the lawyer. [\rightarrow] The professor mentioned the lawyer.</td>
</tr>
<tr>
<td>Non-entailment: NP/S</td>
<td>The $N_1 \land \neg N_2 \land \neg N_3$</td>
<td>The managers heard the secretary encouraged the author. [\rightarrow] The managers heard the secretary</td>
</tr>
</tbody>
</table>
Construction Methods: Fully Automatic
Construction Methods: Fully Automatic

- Examples: Ebrahimi et al. (2018), Wallace et al. (2019)
Construction Methods: Fully Automatic

- Examples: Ebrahimi et al. (2018), Wallace et al. (2019)
Challenge Sets: Limitations

- Availability
 - Limited coverage of tasks and languages
 - Need to expand beyond English and to more NLP tasks
Challenge Sets: Limitations

- **Availability**
 - Limited coverage of tasks and languages
 - Need to expand beyond English and to more NLP tasks
Challenge Sets: Limitations

- **Availability**
 - Limited coverage of tasks and languages
 - Need to expand beyond English and to more NLP tasks
- **Methodology**
 - What does failure on a challenge set tell us?
 - Who is to blame, the model or its training data?
 - Lie et al. (2019) fine-tune a model on a few challenge set examples and re-evaluate
 - Rozen et al. (2019) diversify both the training and test data
 - Geiger et al. (2019) propose method for determining whether a generalization task is “fair”
Outline

- Structural analyses
- Behavioral analyses
- Interaction + Visualization
- Other methods
How many circles do you see?
Visualization can help you understand larger patterns
BUT… Visualization can lie. It was actually 17 😞
Outline

● Structural analyses
● Behavioral analyses
● Interactive visualizations
 ○ Why do we want interactive visualizations?
 ○ Example: Identifying neuron purpose
 ○ Categorizing research in visualization
 ○ Hands-on with a simple attention visualization
 ○ Future challenges and limitations
● Other methods
Visual Analytics

“The goal of Visual Analytics is to make our way of processing data and information transparent for an analytic discourse.

The visualization of these processes will provide the means of communicating about them”
The role of interaction and visualization

Exploration
I wonder what neuron values represent?

“playing” with model to form hypothesis

Hypothesis
Neurons in a layer learn about POS tags.

structural/behavioral testing

Conclusion
Neurons in layer X learn parsing to Y%.

Revised Hypothesis
Neurons 3, 287, and 850 learn about NP.

structural/behavioral testing

“cheap” tests in the interface

New Conclusion
These neurons identify NP to Y%.
Why? - Interactive methods help...

... reduce the exploration space when it is too large for brute-force methods

[Sercu et al., 2019]
Why? - Interactive methods help...

... to generate hypotheses about model behavior or a dataset

[Wexler et al., 2019]
Why? - Interactive methods help...

... asking counterfactual “what if” question to the model and data

[Krause et al., 2016]
Why? - Interactive methods help...

... understand difficult concepts

A \[
 \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V
\]

B [Vaswani et al., 2017]
Why? - Interactive methods help...

... understand difficult concepts

\[\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V \]
“A key element of the visualization approach is its ability to generate trust in the user. Unlike pure machine learning techniques, in a data visualization the user “sees” the data and information as a part of the analysis.

When the visualization is interactive, the user will be part of the loop and involved in driving the visualization. In such a context, the development of a mental model goes hand in hand with the visualization.”

[Endert et al., 2018]
Outline

● Structural analyses
● Behavioral analyses
● Interactive visualizations
 ○ Why do we want interactive visualizations?
 ○ Example: Identifying neuron purpose
 ○ Categorizing research in visualization
 ○ Hands-on with a simple attention visualization
 ○ Future challenges and limitations

● Other methods
Motivation: finding neurons with a purpose

Can we do this interactively? Can we do this for groups of neurons? Exhaustive search is in $O(n!)$.
Interactive Visualization Questionnaire

What is the goal of the tool?

- Scientific / Pedagogical / Debugging / Debiasing / ...
- Understanding model structure / model decisions / data / ...

How do you quantify an outcome? Generated hypotheses about model behavior

Who is your user?

- ML or NLP Expert / Domain Expert / Student / ...

How much domain/model knowledge do they have? Enough to understand metadata

The answers will inform the following implementation questions:

- Does the tool require interaction with the model? With the data? Needs to interact with extracted data
- Can you change the model structure or model decisions? No
of the first aircraft is set
of the first aircraft is set

Issues

Does not scale to large d_{hid}.

Hidden states are position-invariant.

Does not allow investigation of neuron groups.

No filtering.

No tying to meta-data (like POS-tags, nesting, etc.)
Consider a text with words \(w_1, \ldots, w_n \).

Let \(h_t \) be a hidden state vector with \(d_{\text{hid}} \) dimensions at timestep \(t \).

Let \(D \) be the set of possible hidden state indices. A selection \(S \subseteq D \) is a subset of the indices.

For a span \((a,b)\) in the text, compute \(S \) as the set of neurons with an activation above a threshold \(l \):

\[
S_2 = \{ c \in \{1 \ldots D\} : h_{t,c} \geq l \text{ for all } a \leq t \leq b \}
\]
The diagram shows a sequence of state values over time, with a table indicating changes in values from h_{t-1} to h_t. The values are as follows:

<table>
<thead>
<tr>
<th>h_{t-1}</th>
<th>h_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td>-0.4</td>
</tr>
<tr>
<td>0.01</td>
<td>0.07</td>
</tr>
<tr>
<td>0.1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

The diagram also illustrates the progression of time and the corresponding state values for different words.
You have a fast selection interface, now what?

Following structural analysis, we could train a probe on only information in S. But this is costly and thus doesn’t allow rapid hypothesis testing.

An interactive system can help by quickly rejecting hypotheses...
the mother of a little prince. The king was anxious to consult the fairies, but the queen would not hear of

his wife in a little hut, which was surrounded by grass and flowers. They were perfectly happy together till, by some

man, in a white coat and a red cap, limping out from among the bushes, for he was lame in his

the presence of a little old woman. She was quaintly dressed in a ruff and farthingale, and a velvet hood covered

who lived in a little cottage with her only son Jack. Jack was a giddy, thoughtless boy, but very kind-hearted

him up in a strong room and sent out letters of invitation to all the other kings and princes asking them to come and

and not in a good temper, `if the fish hung on to your tail, I suppose he will hang on to

the hare in a fishing net and fastened it on the edge of a little stream, not troubling himself to think how unpleasant

for her in a great nook; and all three couples lived happily until they died. (LSB - From stansdae: Mutchen Poesien Wien

ready beforehand in a little saucepan hissing hot; Master Peter mashed the potatoes with incredible vigour; Miss Belinda sweated up the

was lit by a burning torch. Creeping softly to the door, he peeped through it, and beheld her lying quietly

putting it in a little basket, she set out to seek the Fairy. But as she was not used to walking

the son of a rich man, who was proud of the boy, and had all his life allowed him to do whatever

Fairuz took himself up on a white horse, which pranced and cantered to the sound of the trumpets. Nothing could have been more

It was in a capital position, for it could get sun, and there was enough air, and all around grew many

round him by a white caftam shawl, and his white, richly jewelled turban showed that he was a man of wealth and

the prince in a little shower. Then the Friede dived back, with an awful splash of flame, and the mountain

the idea of a stupid fellow whom people called Dulhead carrying off his daughter, and he began to make fresh conditions

put him on a long flannel garment, and called to the undertaker's men to fasten down the lid and carry him to

the prince in a little shower. Then the Friede dived back, with an awful splash of flame, and the mountain

for her under a shady tree, and she invited the Prince to share the cream and brown bread which the old woman provided

keep him in a good temper, and as this was an imitation Father Grumble never refused, he tossed it off and left

old ghost in a white waistcoat, with a monstrous iron safe attached to its ankle, who cried piteously at being unable to

the shape of a little rabbit and came to your arms for shelter, for I know that those who are merciful to animals

the air by a strong hand. This new reinforcement was the work of the wicked Fairy of the Desert, who had

would fight in a friendly manner, merely to prove which was the stronger, but on other occasions the enemy would turn out

all alone in a small wood, hard by the King's palace. She entered it and asked if she might be

his majesty in a sulky voice. Well, you have a right to it, and I shall tell you.
Outline

● Structural analyses
● Behavioral analyses
● Interactive visualizations
 ○ Why do we want interactive visualizations?
 ○ Example: Identifying neuron purpose
 ○ **Categorizing research in visualization**
 ○ Hands-on with a simple attention visualization
 ○ Future challenges and limitations
● Other methods
User+Task analysis

Understand - Diagnose - Refine

Towards better analysis of machine learning models: A visual analytics perspective.
[Liu et al. ‘17]

Architect - Trainer - End-User

LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks
[Strobelt, Gehrmann, et al. ‘16]

<table>
<thead>
<tr>
<th>WHY</th>
<th>WHAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Interpretability & Explainability</td>
<td>6.1 Computational Graph & Network Architecture</td>
</tr>
<tr>
<td>4.2 Debugging & Improving Models</td>
<td>6.2 Learned Model Parameters</td>
</tr>
<tr>
<td>4.3 Comparing & Selecting Models</td>
<td>6.3 Individual Computational Units</td>
</tr>
<tr>
<td>4.4 Teaching Deep Learning Concepts</td>
<td>6.4 Neurons in High-dimensional Space</td>
</tr>
<tr>
<td>5.1 Model Developers & Builders</td>
<td>6.5 Aggregated Information</td>
</tr>
<tr>
<td>5.2 Model Users</td>
<td></td>
</tr>
</tbody>
</table>
Examples: **Passive Observation**

The previous two parts of this tutorial
Examples: **Passive Observation**

Understanding Model Structure

Exploring Neural Networks with Activation Atlases
[Carter, et al.'19]

Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow
[Wongsuphasawat et al. ‘18]

Understanding Model Decisions

“Why Should I Trust You?” Explaining the Predictions of Any Classifier
[Ribeiro et al. ‘16]

Rationalizing Neural Predictions
[Lei et al. ‘16]

Tools:
Captum
AllenNLP_Interpret
Examples: Passive Observation

Understanding Model Structure
Exploring Neural Networks with Activation Atlases
[Carter, et al.’19]

Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow
[Wongsuphasawat et al. ‘18]

Understanding Model Decisions
“Why Should I Trust You?” Explaining the Predictions of Any Classifier
[Ribeiro et al. ‘16]

Rationalizing Neural Predictions
[Lei et al. ‘16]

Tools:
Captum
AllenNLP Interpret

EMNLP 2020 Tutorial: Interpreting Predictions of NLP Models
Eric Wallace, Matt Gardner and Sameer Singh
Examples: Interactive Observation
Examples: **Interactive Observation**

Understanding Model Structure

LSTMVis: A tool for visual analysis of hidden state dynamics in recurrent neural networks
[Strobelt, Gehrmann, et al.’16]

Understanding Hidden Memories of Recurrent Neural Networks
[Ming et al. ‘17]

Understanding Model Decisions

RNNbow: Visualizing Learning via Backpropagation Gradients in Recurrent Neural Networks
[Cashman et al. ‘18]

A Workflow for Visual Diagnostics of Binary Classifiers using Instance-Level Explanations
[Krause et al. ‘17]
UX and Evaluation of Interaction and Visualization

Guidelines for Human-AI Interaction
[Amershi et al. ‘19]

Machine Learning as a UX Design Material: How Can We Imagine Beyond Automation, Recommenders, and Reminders?
[Yang et al. ‘18]

Agency plus automation: Designing artificial intelligence into interactive systems
[Heer, ‘19]

Beyond Accuracy: The Role of Mental Models in Human-AI Team Performance
[Bansal et al. 19]

Human Evaluation of Models Built for Interpretability
[Lage et al., ‘19]

Proxy Tasks and Subjective Measures Can Be Misleading in Evaluating Explainable AI Systems
[Bucinca et al. ‘20]

Principles of Explanatory Debugging to Personalize Interactive Machine Learning
[Kulesza et al. ‘15]

On Human Predictions with Explanations and Predictions of Machine Learning Models: A Case Study on Deception Detection
[Lai et al. 19]

Many more in Proceedings of IEEE Vis, CHI, FAccT, IUI, and the VisXAI Workshop!
Outline

- Structural analyses
- Behavioral analyses
- Interactive visualizations
 - Why do we want interactive visualizations?
 - Example: Identifying neuron purpose
 - Categorizing research in visualization
 - Hands-on with a simple attention visualization
 - Future challenges and limitations
- Other methods
Hands-on: developing an attention visualization

Minimal Attention Vis

Select model: DistilBert
Enter a sentence: I dropped my pen in the mashed potatoes.

Results
Layers & Heads
Interactive Visualization Questionnaire

What is the goal of the tool?
- Scientific / Pedagogical / Debugging / Debiasing / ...
- Understanding model structure / model decisions / data / ...
- How do you quantify an outcome? Better understanding of self-attention

Who is your user?
- ML or NLP Expert/ Domain Expert / Student / ...
- How much domain/ model knowledge do they have? Very limited

The answers will inform the following implementation questions:
- Does the tool require interaction with the model? With the data? Needs to extract attention at inference-time
- Can you change the model structure or model decisions? No
The 1-day JS Prototype

 git clone https://github.com/SIDN-IAP/attnvis.git
 cd attnvis
install dependencies:
 conda env create -f environment.yml
get server to start without errors
 conda activate attnvis
 python server.py
Challenges compared to seq2seq attention

Filtering: We now have 100+ heads

Aggregation: How do we combine multiple attentions?

Key/Value/Query: What do we do with that?
Step 1 Agree on an API between backend and visualization

```json
{
    "tokens": List[unicode string],
    "attention": List[List[List[float32]]]
}
```

Note: this API does not support batching!
PyTorch

flask

d3.js

Python

Model (api.py)

Rest Interface (server.py)

Javascript / HTML / CSS

JS Interface + VIS (index.html)

Minimal Attention VIS

Select model: gpt-3
Enter a sentence: Life is what happens when you're busy making other plans.

Results:

Layers & Heads

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
</table>
import torch
from transformers import AutoTokenizer, AutoModel

class AttentionGetter:
 '''Wrapper Class to store model object.'''
 def __init__(self, model_name: str):
 super().__init__()
 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 self.model = AutoModel.from_pretrained(model_name, output_attentions=True).to(self.device)
 self.tokenizer = AutoTokenizer.from_pretrained(model_name)
def bert_analyze_text(self, text: str):
 """Works for BERT Style models""
 # Tokenize input.
 toked = self.tokenizer.encode(text)
 # Build tensor and unsqueeze batch dimension.
 context = torch.tensor(toked).unsqueeze(0).long()
 # Extract attention.
 attn = self._grab_attn(context)
 # Build payload.
 return {
 "tokens": self.tokenizer.convert_ids_to_tokens(toked),
 "attention": attn,
 }
def _grab_attn(self, context):
 '''
 function to get the attention for a model.
 First runs a forward pass and then extracts and formats attn.
 '''
 output = self.model(context)
 # Grab the attention from the output tuple.
 # Format as Layer x Head x From/To
 attn = torch.cat([[l for l in output[-1]], dim=0])
 format_attn = [
 [[str(round(att * 100)) for att in head] for head in layer]
 for layer in tok
 for tok in attn.cpu().tolist()
]
 return format_attn
Python

MODEL (api.py) <-> REST interface (server.py)

huggingface pytorch

flask

Javascript / HTML / CSS

JS interface + VIS (index.html)

html/css/js
d3.js
import json
import os

from flask import Flask as Flask,
from flask import request, redirect

from api import AttentionGetter

app = Flask(__name__)

Set up cache for model wrappers.
loaded_models = {}

redirect requests from root to index.html
@app.route('/')
def hello_world():
 return redirect('client/index.html')

if __name__ == '__main__':
 app.run()
@app.route('/api/attn', methods=['POST'])
def attn():
 sentence = request.json['sentence']
 model_name = request.json.get('model_name', 'distilbert-base-uncased')

 # lazy loading.
 if model_name not in loaded_models:
 loaded_models[model_name] = AttentionGetter(model_name)
 model = loaded_models[model_name]

 # Call on the model to get attention
 results = model.bert_analyze_text(sentence)

 # return object with request (sentence, model_name) and results.
 return json.dumps({
 "request": {
 "sentence": sentence, "model_name": model_name,
 } ,
 "results": results
 })
Python

MODEL (api.py)

huggingface
pytorch

flask

REST interface (server.py)

Javascript / HTML / CSS

JS interface + VIS (index.html)

html/css/js
d3.js

Minimal Attention Vis

Select model: gpt-2
Enter a sentence: Life is what happens when you're busy making other plans.

Results
Life is what happens when you're busy making other plans.
Layers & Heads

0 1 2 3 4 5 6 7 8 9 10 11
<h3>Minimal Attention Vis</h3>

```
<div class="header">
  Select model:  
  <select name="" id="model_select">
    <option value="gpt2">GPT-2</option>
    <option value="distilbert-base-uncased">DistilBert</option>
  </select>
  <br>
  Enter a sentence:
  <input type="text" id="inputText"
    value="I dropped my pen in the mashed potatoes.">
  <button id="sendButton">send</button>
</div>
<hr>

```

```
<div style="padding-top: 5px;">
  <div style="font-weight: bold; padding-top: 10px;">Results</div>
  <div id="results" style="padding-top: 5px;">
  
  </div>
  <div style="font-weight: bold; padding-top: 10px;">Layers & Heads</div>
  <div id="layers" style="padding-top: 5px;">
  
  </div>
  <div id="heads" style="padding-top: 5px;">
  
  </div>
</div>
```
// select input field.
const myInput = d3.select("#inputText");
// act when content changes.
myInput.on('change', () => triggerServerRequest());
// also act on clicking the send button.
d3.select('#sendButton').on('click', triggerServerRequest);

function triggerServerRequest(){
// get input content and bind to var.
const input_sentence = myInput.property('value');
const model_name = d3.select('#model-select').property('value');

// send everything to the server
// and return a promise
const server_query = {
method: "POST",
body: JSON.stringify({
 sentence: input_sentence,
 model_name
}),
headers: {
 "Content-Type": "application/json"
}
};

// if Promise is fullfilled (aka: server response is back) then...
server_query.then(response => {
currentModel = response.request.model_name;
currentResults = response.results;

// don't change selectedToken unless text is shorter
selectedToken = Math.min(selectedToken, response.results.tokens.length - 1);

// update layer buttons, heads visualization, text visualization
updateLayerBtns(currentResults.attention.length);
updateHeadsVis();
updateTextVis();
});
}
/**
 * update the layer buttons
 * @param no_btns -- number of buttons
 */
const updateLayerBtns = (no_btns) => {
 // create/update as many buttons as there are layers
 d3.selectAll('.btn').data(d3.range(no_btns)).
 join('div').
 attr('class', 'btn')
 // most left/right buttons have round corners
 .classed('btn_l', d => d === 0)
 .classed('btn_r', d => d === (no_btns - 1))
 .text(d => d)
 .on('click', d => {
 // if clicked... set selected layer and update all VIS
 selectedLayer = d;
 updateLayerSelection();
 updateHeadsVis();
 updateTextVis();
 })
 updateLayerSelection();
};
1) .selectAll Select all .btn elements
 [btn1, btn2, ...]
2) .data Set their data to the index value
 [(btn1, 0), (btn2, 1), ...]
3) .join create/delete elements to match data
 [(btn1, 0), (btn2, 1), ...]
4) .classed Conditionally set classes
5) .text Set their text to the index
6) .on Set their onClick handler
const updateLayerSelection = () => {
 d3.select('#layers').selectAll('.btn')
 .classed('selected', d => d === selectedLayer);
}
Define a linear color scale variable

1) `.selectAll` Get all attention head elements
2) `.data` Filter attn values to those of the selected token and bind to head elements
3) `.join` Create/delete elements to match number of attention links
4) `.attr` Make sure all divs (even the just created one’s) have the correct class
5) `.classed` highlight the selected token
6) `.style` Set the color to the color scale value
Minimal Attention Vis

Select model: Distil Bert
Enter a sentence: I dropped my pen in the mashed potatoes.

Results
Layers & Heads
Call for Reproducibility and Public Adoption: open source with documentation

Adding Your Own Data

If you want to train your own data first, please read the Training document. If you have your own data at hand, adding it to LSTMs is very easy. You only need three files:

- HDF5 file containing the state vectors for each time step (e.g. `cct_epoch10.h5`)
- HDF5 file containing a word ID for each time step (e.g. `train.h5`)
- Dict file containing the mapping from word ID to word (e.g. `words.dict`)

A schematic representation of the data:

If you don’t have these files yet, but a space-separated `.txt` file of your training data instead, check out our text conversion tool
Outline

- Structural analyses
- Behavioral analyses
- **Interactive visualizations**
 - Why do we want interactive visualizations?
 - Example: Identifying neuron purpose
 - Categorizing research in visualization
 - Hands-on with a simple attention visualization
 - Future challenges and limitations
- Other methods
Interaction and visualization matters at every step!

Understanding
Communicating challenging concepts
Awareness of limitations and flaws of an approach

Forming hypotheses
It reduces the exploration space
It helps us create hypotheses about data and models

Testing hypotheses
Counterfactual analysis
Connecting small insights to more expensive computation
Advantages of visual analytics

Understanding: The design of the infrastructure of a VA tool *can* be easily extensible to new models.

Forming hypotheses: Much faster with interactive tools.

Testing hypotheses: More accessible through “playing” with a model.
Disadvantages of visual analytics

The development of VA tools is expensive and time consuming.

It is almost impossible to make tools useful across tasks.

Accepting a hypothesis is often not possible without a full investigation, a VA tool can thus often only be used as additional step in an analysis.
Research opportunities in Interactive visualization

Human-in-the-Loop Model Correction
[Law et al., ’20] [Cabrera et al., 19] [Lyytinen et al., ’19]

Causality and Counterfactual What-If Analyses
[Strobelt et al. ’18] [Wexler et al., ’19]

Tighter integration of model + interface development
[Liu et al. ’17] [Heer, ’19] [Gehrmann et al.’19]

Evaluation for Usability and Utility
[Hohman et al., ’18]
Research opportunities in Interactive visualization

Human-in-the-Loop Model Correction
[Law et al., ’20] [Cabrera et al., ’19] [Lyytinen et al., ’19]

Causality and Counterfactual What-If Analyses
[Strobelt et al. ’18] [Wexler et al., ’19]

Tighter integration of model + interface development
[Liu et al., ’17] [Heer, ’19] [Gehrmann et al.’19]

Evaluation for Usability and Utility
[Hohman et al., ’18]
Outline

- Structural analyses
- Behavioral analyses
- Interaction + Visualization
- Other methods
Other Topics

● Adversarial examples
 ○ Can point to model weaknesses
 ○ Challenges with text input (and output)
 ■ How to calculate gradients
 ■ How to measure similarity to real examples

● Generating explanations
 ○ Annotated explanations (Zaidan et al. 2007, Zhang et al. 2016)
 ○ Rationales: erasure-based (Li et al. 2016), latent variables (Lei et al. 2016)
 ○ Self-explaining models (Narang et al. 2020), translating neuralese (Andreas et al. 2017)

● Formal languages as models of language
 ○ For example: can LSTMs learn context-free languages?
 ○ Long line of research starting in the 1980s (Tonkes and Wiles 1997, Sü zgün et al. 2019)
Conclusion

- Two broad approaches to interpreting neural NLP models:
 - Structural probing to analyze model representations and
 - Challenge sets to analyze structure
- Visualization techniques can speed up exploration of both structural/behavioral properties of models
- These techniques differ in their goals and assumptions
- Questionnaire can help assess contribution of a study or to choose appropriate approach for a given problem
Conclusion

● Open questions and directions for future work:
 ○ How can we make insights from these techniques actionable?
 ○ What is the connection between representations’ structure (measured by probing techniques, visualizations) and model decisions (measured by challenge sets)?
 ○ Can techniques like probing classifiers be adapted to measure something less correlational, and more causal?

● Want more? See EMNLP tutorial on Interpreting Predictions of NLP Models (Wallace, Gardner, and Singh)